Courses Aligned with Employability

Course Title	Justification (Industry relevance and skill alignment)
Power System Analysis	Essential for roles in grid design, load flow studies, and fault analysis. Critical for power utilities and consulting firms.
Power System Operation, Control, and Optimization	Prepares students for system operator roles, energy market analysis, and grid optimization.
Dynamics of Linear Systems	Builds expertise in stability analysis and control systems, vital for power system dynamics roles.
Advanced Power System Lab	Hands-on training in MATLAB/PSCAD for load flow, state estimation, and contingency analysis—key for simulation engineers.
Power Quality	Skills in mitigating harmonics, voltage sags, and flicker—critical for roles in energy quality management.
Power System Dynamics	Expertise in transient stability and damping control for grid operation and planning roles.
Nonlinear Systems and Control	Advanced control strategies for complex systems, relevant for automation and robotics in power sectors.
Power Quality and Renewable Energy Lab	Practical skills in solar/wind integration and power quality solutions—aligned with renewable energy firms.
Python Lab	Python programming, data analysis, and automation skills—highly valued in data-driven engineering roles.
Renewable Energy Systems	Prepares for careers in solar/wind project design, grid integration, and sustainable energy firms.
Smart Grid	Expertise in AMI, microgrids, and IoT-based grid technologies—key for smart grid implementation roles.
High Power Converters	Design of multilevel inverters and PWM techniques—critical for power electronics and industrial applications.
Electrical Power Distribution System	Skills in distribution automation, SCADA, and feeder management—vital for utility engineers.
Restructured Power Systems	Knowledge of deregulated markets, congestion management, and LMP—prepares for energy trading roles.

Advanced Signal Processing	Skills in DSP for grid data analysis and protection systems—relevant for R&D roles.
Digital Protection of Power Systems	Expertise in numerical relays and fault algorithms—critical for protection engineering careers.
SCADA System and Applications	SCADA architecture, RTU programming, and industrial automation—key for grid monitoring roles.
Electric and Hybrid Vehicles	EV technology, battery management, and charging infrastructure—aligned with automotive and energy sectors.
Artificial Intelligence	AI/ML applications in power systems (e.g., load forecasting)—valuable for smart grid analytics roles.
Power System Transients	Expertise in lightning protection and transient analysis—critical for transmission line design roles.
FACTS	Skills in reactive power management (STATCOM, SSSC)—vital for grid stability roles.
Industrial Load Modelling	Load profiling and demand-side management—key for energy efficiency consultants.
Optimal Control	Control system design for industrial automation—relevant for process optimization roles.
HVDC Systems	Expertise in HVDC converter operation and long-distance transmission—niche skill for grid modernization projects.
Python Data Analytics	Data mining, visualization, and machine learning—critical for roles in energy analytics and AI-driven solutions.
Waste to Energy	Converts waste to energy—skills for roles in sustainable waste management and biogas plants.
Energy Audit and Management	Energy efficiency auditing and optimization—aligned with ESG consulting and green certification roles.
Composite Materials	Advanced materials for renewable energy infrastructure—relevant for R&D in solar/wind sectors.
Cost Management of Engineering Projects	Budgeting, resource allocation, and project planning—critical for project management roles.
Seminar	Enhances technical communication, research presentation, and teamwork skills.

Phase – I & II Dissertation	Real-world project execution, prototyping, and problem-solving—simulates industry R&D environments.
-----------------------------	---

Courses Aligned with Entrepreneurship

Course Title	Justification (Entrepreneurial Opportunities/Skills)
Renewable Energy Systems	Skills to launch startups in solar/wind integration, microgrid solutions, or green energy consulting.
Smart Grid	Expertise in AMI, IoT-based grid automation, and demand response systems—ideal for smart energy startups.
Python Data Analytics	Data-driven decision-making for energy analytics firms, AI-driven grid optimization ventures, or predictive maintenance services.
Electric and Hybrid Vehicles	Opportunities in EV charging infrastructure, battery management systems, or sustainable mobility startups.
Waste to Energy	Startups focused on biogas plants, waste-to-electricity projects, or sustainable waste management solutions.
Energy Audit and Management	Launch energy efficiency consultancies, ESG compliance services, or green certification agencies.
HVDC Systems	Niche ventures in long-distance renewable energy transmission or grid modernization projects.
FACTS	Startups offering reactive power compensation solutions (STATCOM, SSSC) for grid stability and renewable integration.
Digital Protection of Power Systems	Innovations in grid cybersecurity, relay design, or fault detection services for utilities.
SCADA System and Applications	Develop industrial automation tools, IoT-based monitoring systems, or custom SCADA solutions for industries.
Research Methodology and IPR	Skills to patent innovations, commercialize technologies, and navigate legal frameworks for startups.
Cost Management of Engineering Projects	Foundational knowledge for project budgeting, resource allocation, and financial planning in startups.
Composite Materials	Ventures in advanced materials for renewable energy infrastructure (e.g., lightweight solar panels).

Phase – I & II Dissertation	Prototype development for scalable solutions (e.g., smart meters, AI-driven grid analytics).
Seminar	Pitching ideas to investors, networking, and refining business models through technical presentations.

Courses Aligned with Skill Development

Course Title	Justification (Key Skills Developed)
Power System Analysis	Load flow studies, fault analysis, contingency ranking, and state estimation using MATLAB/PSCAD.
Advanced Power System Lab	Hands-on simulation of load flow, transient stability, and optimal power flow scenarios.
Power Quality and Renewable Energy Lab	Solar/wind system testing, MPPT algorithms, and harmonic mitigation techniques.
Python Lab	Python programming, data analysis (Pandas/NumPy), automation scripts, and machine learning basics.
Nonlinear Systems and Control	Nonlinear modeling, Lyapunov stability analysis, and sliding mode control strategies.
Digital Protection of Power Systems	Numerical relay algorithms, fault detection logic, and relay coordination using software tools.
SCADA System and Applications	SCADA architecture design, RTU configuration, and industrial communication protocols (e.g., DNP3).
FACTS	Design and control of STATCOM, SSSC, and UPQC for grid stability and reactive power management.
HVDC Systems	HVDC converter operation, control strategies, and grid integration techniques.
Smart Grid	Microgrid operation, demand response systems, and IoT-based grid monitoring tools.
High Power Converters	Multilevel inverter design, PWM techniques, and converter protection circuits.
Electric and Hybrid Vehicles	EV drive-train design, battery management systems (BMS), and hybrid energy optimization.

Power System Transients	Lightning protection, transient overvoltage analysis, and insulation coordination.
Restructured Power Systems	Energy market modeling, congestion management, and transmission pricing strategies.
Advanced Signal Processing	DSP techniques for grid data analysis (FFT, wavelet transforms) and fault detection.
Mathematical and Computational Methods	Numerical optimization, Monte Carlo simulations, and regression modeling for power engineering.
Composite Materials	Material science skills for designing lightweight, durable components in renewable energy systems.
Energy Audit and Management	Energy efficiency auditing, carbon footprint analysis, and sustainability reporting.
Phase – I & II Dissertation	Research methodology, prototyping, and technical documentation for real-world projects.
Seminar	Technical presentation, critical analysis, and peer-review communication skills.

Courses Aligned with Professional Ethics

Course Title	Justification (Ethical Relevance)
Research Methodology and IPR	Teaches ethical research practices, intellectual property rights, and plagiarism prevention. Covers patent laws and academic integrity.
Power Station Practices	Emphasizes compliance with environmental regulations, safety protocols, and ethical energy generation practices.
Power Quality	Focuses on ensuring reliable power supply ethically, minimizing harm to industrial/consumer equipment.
SCADA System and Applications	Addresses cybersecurity ethics, data privacy, and responsible use of automation systems in critical infrastructure.
Digital Protection of Power Systems	Highlights ethical responsibility to safeguard grid reliability and prevent cyber-physical attacks.
Cost Management of Engineering Projects	Teaches transparent budgeting, anti-corruption practices, and ethical resource allocation in projects.

Waste to Energy	Promotes ethical waste disposal and sustainable energy conversion to reduce environmental harm.
HVDC Systems	Stresses ethical practices in high-voltage transmission to minimize ecological and community risks.
FACTS	Ensures ethical grid management for equitable power distribution and stability.
Smart Grid	Covers ethical deployment of smart technologies, including user data privacy and equitable access.
Environmental Science	Addresses ethical responsibility toward ecological conservation and pollution control.
Energy Audit and Management	Encourages ethical energy use, transparency in audits, and compliance with sustainability standards.
Phase – I & II Dissertation	Requires adherence to ethical research guidelines, data integrity, and avoidance of biased methodologies.

Courses Aligned with Gender

Course Title	Justification (Gender Relevance)
Organisation of Engineering Systems and HRM	Explicitly covers workplace diversity, gender equity, and inclusive HR policies. Discusses organizational behavior and strategies to promote gender balance in engineering roles.

Courses Aligned with Human Values

Course Title	Justification (Societal/Ethical Impact)
Renewable Energy Systems	Promotes equitable access to clean energy, reducing health hazards from fossil fuels in marginalized communities.
Waste to Energy	Converts waste into energy ethically, addressing sanitation issues and reducing environmental injustice in urban/rural areas.
Smart Grid	Enhances energy access for underserved regions through microgrids and decentralized renewable systems.
Electric and Hybrid Vehicles	Reduces air pollution, improving public health and quality of life in densely populated areas.

Power Quality	Ensures reliable power for critical infrastructure (hospitals, schools), directly supporting societal well-being.
Research Methodology and IPR	Encourages ethical innovation and protects community-driven solutions through intellectual property rights.
Environmental Science	Addresses ecological conservation and sustainable resource use, safeguarding future generations.
Energy Audit and Management	Promotes responsible energy consumption, reducing societal dependence on non-renewable resources.
HVDC Systems	Supports long-distance transmission of renewable energy to remote areas, fostering energy equity.
FACTS	Ensures stable power supply to communities, preventing outages that disrupt daily life and safety.
Power Station Practices	Emphasizes ethical energy generation to minimize pollution and protect community health.
Phase – I & II Dissertation	Encourages projects addressing societal challenges (e.g., rural electrification, disaster-resilient grids).
Composite Materials	Develops eco-friendly materials for renewable infrastructure, reducing environmental harm to communities.
Cost Management of Engineering Projects	Prioritizes cost-effective, ethical solutions for public infrastructure to maximize societal benefit.

Courses Aligned with Human Values

Course Title	Justification (Societal/Ethical Impact)
Renewable Energy Systems	Promotes equitable access to clean energy, reducing health hazards from fossil fuels in marginalized communities.
Waste to Energy	Converts waste into energy ethically, addressing sanitation issues and reducing environmental injustice in urban/rural areas.
Smart Grid	Enhances energy access for underserved regions through microgrids and decentralized renewable systems.

Electric and Hybrid Vehicles	Reduces air pollution, improving public health and quality of life in densely populated areas.
Power Quality	Ensures reliable power for critical infrastructure (hospitals, schools), directly supporting societal well-being.
Research Methodology and IPR	Encourages ethical innovation and protects community-driven solutions through intellectual property rights.
Environmental Science	Addresses ecological conservation and sustainable resource use, safeguarding future generations.
Energy Audit and Management	Promotes responsible energy consumption, reducing societal dependence on non-renewable resources.
HVDC Systems	Supports long-distance transmission of renewable energy to remote areas, fostering energy equity.
FACTS	Ensures stable power supply to communities, preventing outages that disrupt daily life and safety.
Power Station Practices	Emphasizes ethical energy generation to minimize pollution and protect community health.
Phase – I & II Dissertation	Encourages projects addressing societal challenges (e.g., rural electrification, disaster-resilient grids).
Composite Materials	Develops eco-friendly materials for renewable infrastructure, reducing environmental harm to communities.
Cost Management of Engineering Projects	Prioritizes cost-effective, ethical solutions for public infrastructure to maximize societal benefit.

Courses Aligned with Environment and Sustainability

Course Title	Justification (Environmental/Sustainability Impact)
Renewable Energy Systems	Focuses on solar, wind, and biomass integration into grids, reducing fossil fuel dependency and greenhouse gas emissions.
Waste to Energy	Converts municipal/industrial waste into clean energy, addressing landfill pollution and promoting circular economy principles.
Smart Grid	Enhances grid efficiency, integrates renewables, and reduces energy waste through IoT-based monitoring and demand response.

Power Quality and Renewable Energy Lab	Practical training in solar/wind system optimization and power quality solutions for sustainable energy integration.
Environmental Science	Covers ecological conservation, pollution control, and sustainable resource management practices.
Electric and Hybrid Vehicles	Reduces carbon emissions and fossil fuel reliance through EV technology and sustainable mobility solutions.
FACTS	Improves grid stability to accommodate higher renewable energy penetration (e.g., solar/wind farms).
HVDC Systems	Enables efficient long-distance transmission of renewable energy (e.g., offshore wind) with minimal losses.
Power Station Practices	Teaches sustainable power generation methods, emission control, and compliance with environmental regulations.
Composite Materials	Develops eco-friendly materials for renewable infrastructure (e.g., lightweight solar panels, wind turbine blades).
Energy Audit and Management	Promotes energy efficiency, reduces carbon footprints, and supports green certification processes.
Python Data Analytics	Enables data-driven optimization of energy systems for reduced environmental impact (e.g., load forecasting, emissions tracking).
Phase – I & II Dissertation	Encourages research on renewable integration, carbon-neutral grids, or climate-resilient infrastructure.
Restructured Power Systems	Facilitates renewable energy trading in deregulated markets, promoting clean energy adoption.
Nonlinear Systems and Control	Optimizes energy consumption in industrial processes through advanced control strategies.